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A multiple-scattering theory of binary disordered alloys is presented using a single-site
approximation in a form different from that of the coherent-potential theory. A reference
Hamiltonian and its propagator are defined by the requirement that there be no forward scat-

tering in this reference frame.
of the lattice.

The reference Hamiltonian is periodic with the periodicity
The resultant solutions are self-consistent and have the advantage of permit-

ting one to directly calculate the various matrix elements, both diagonal and nondiagonal, of

the alloy propagator.

The formalism is not limited to a single-band model Hamiltonian nor

to localized perturbations, but has wide applicability. The limitations of the approximations
and idealizations made in this theory are discussed, especially the neglect of a self-consistent

treatment of the potential perturbations.

I. INTRODUCTION

Much recent work on the theory of disordered
systems has employed the multiple-scattering
description. !™!! In this approach, the propagation
of an electron or lattice wave in a disordered sys-
tem is regarded as a succession of elementary
scatterings on the random atomic scatterers, which
are then averaged over all configurations of atoms.
The coherent-potential (CP) theory has been shown!
to be the best of the ones presently available em-
ploying the single-site approximation, where cor-
relations between clusters of scatterers are neglect-
ed. The CP theory determines in a self-consistent
fashion the Hamiltonian with a periodic potential
(permitted to be complex) which “best” approximates
that of the actual alloy. The criterion used to de-
termine this Hamiltonian is to first replace one site
of the periodic potential by an atom of the alloy and
then average the scattering from this site by dis-
tributing on it the various atoms in the alloy. Set-
ting this average scattering to zero determines the
Hamiltonian. In an outstanding paper, Velicky,
Kirkpatrick, and Ehrenreich! give a discussion of
the CP theory and clearly specify the approxima-
tions that enter into it. They and other authors® ®?®
applied this theory to a binary disordered alloy
where the potential introduced by each atom is
localized to just its own lattice site. Takeno? de-
veloped the theory for the case of a potential which
extends over more than one lattice site.

In this paper a self-consistent theory with a dif-
ferent single-site approximation is presented. The
criterion for choosing the reference Hamiltonian in
this theory is that the total forward scattering be
zero. This is to be distinguished from the CP the-
ory which requires that the total averaged scatter-
ing trom each site be zero, both forward and non-
forward.

In Sec. II we consider multiple-scattering theory
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and define our form of the single-site approxima-
tion. The importance of finding a reference Ham-
iltonian which sets the total forward scattering to
zero is indicated in this section. In Sec. III a more
detailed discussion of the properties of the theory
and its comparison with other approaches are given.

II. SINGLE-SITE APPROXIMATION

The problem we will consider is an independent-
particle model of a disordered solid solution binary
alloy composed of N; type-one atoms and N, type-
two atoms. The Hamiltonian for the alloy we as-
sume can be written in the form

H=H,+V,
(1)

V=Zr’n Vi ’

where H, is a periodic Hamiltonian of a pure solid
composed of type-one atoms, and V, is the poten-
tial perturbation contributed by a type-two atom
replacing a type-one atom at the site m. The
prime over the summation sign is to signify that
the sum is not over all lattice sites, but just those
with type-two atoms. By assuming a solid solution,
we guarantee that m will always be on a lattice site
and we make the further assumption that no distor-
tions are introduced by alloying, i.e., no volume
change on alloying. In the actual case, V, has to
be solved self—consistently12 as its value de-
pends on the distribution of the electrons in its
vicinity in the alloy. It would in general vary from
site to site, depending on its surroundings. How-
ever, in order to make the problem more tractable,
we assume that V,, is known, independent of the
solution of the problem, and is the same around
each site independent of its surroundings, but its
range is not necessarily restricted to just one lat-
tice site.

Our goal is to determine the Green’s function G
of the Hamiltonian in (1),

342
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G=(E-H)'. (2) and with host atoms. In our case, we associate A
with only the impurity sites. This is not to imply
To do this we first determine G,, defined by that A is localized on only the impurity sites. Quite
Gu=(E-H,)", (3) the contrary, A covers the volume of the alloy and this
is essential toits property of contributing tothe scat-
where tering only in the forward direction. In the book-
H,=H,+A (4) keeping used here, A is associated with only the
impurities and each impurity contributes A/N, to
and the total A. It must be remembered that we are
A=D, i ‘ nk) AM,(E) n'k |, (5) not assuming, as done in the CPA, that the impurity
n,n’%k

a diagonal operator in the wave vectors of the Bloch
states Ink) which are solutions of H,. The Bloch
states have the property that

Hy|nk) =E, (k)| nk) . (86)

Here k represents the crystal wave vector of the
Bloch state and »n represents the band index. Note
that A couples to different bands, but not to differ-
ent E, and thus G, is diagonal K but is coupled be-
tween bands. Interms of G,, we can write the

equality

G=G,4+G,(V-A)G . (7
We next introduce the T operator by the equation

(V-A)G=TG, . (8)
Inserting (8) into (7), we obtain

G=G,+G,TG, . (9)

If we define G, by requiring that the forward scat-
tering of T be zero,

(n'k| T|nk)=0, (10)

then G 4, has the same diagonal elements as G. The
density of states of the alloy depends solely on the
diagonal elements of G, and thus G, can be used
to calculate this density of states. In what follows,
we assume that G, is defined by condition (10).

We can obtain an equation for T by replacing G
in (8) by the expression in (9):

T=(V-A)(1+G,T) . (11)

Let us assume that 7 can be written as a sum of
contributions from the same lattice sites that con-
tribute to V. Thus we can write

T=2m Om - (12)
We also can write
V-A=2n(Vm-A/N,), (13)

where N, is the total number of scattering atoms
of type two. It is important to note the difference
from the coherent-potential approximation (CPA)
implied by (13). In the CPA, the operator A is as-
sumed to be periodic and to contribute to the scat-
tering from each site, both ones with impurities

potential is localized at each site. Not only A/N,,
but V,, extends over more than the site m. In con-
trast to the CPA, the formalism presented here is
not limited to the special case where the perturba-
tions are localized around each site.

Substituting (12) and (13) into (11), we find that

Qi=Ti(1+GA 2" Qn), (14)

m#l
where T, is the single-impurity ¢ matrix defined by
T =[1=(V,=A/Np)G ] (V, - A/N,) . (15)

In the limit that the volume & of the alloy becomes
very large and N,/(N, + N,) =c stays constant, N,
also becomes very large and A/N,, which is pro-
portional to £°!, can be treated as a perturbation.
As shown in Appendix A, to first order in 9}, T,
can be written as

Ti=tj4=A/N,, (15"
where ¢, ,=[1-V,G,]"'V,. In (15’) we neglect terms
of the form AV, /N, and (4/N,)? and higher order
since these are at least of order Q! compared to
retained terms. We illustrate this for the neglected
term AV, /N, by comparing it with the retained

term V,. In order to neglect AV,/N, compared to
V,, we must show that all matrix elements of the
former are of the order 2! compared to the cor-
responding elements of the latter. Use the Bloch
state representation and consider the matrix ele-
ment

(R|AV, /Ny k") =AR)/N, |V, |R") .

We see immediately that this matrix element is
A(R)/N, times the corresponding element of V.
But A(k)/N, is of the order of Q!, going to zero
as Q-«. Physically, as we show later, A(k)/N,
is the change in the energy of the state |k) pro-
duced by the addition of one impurity. We know
that such a change is proportional to the increase
in the number of impurities per unit volume. The
addition of one impurity changes the number per
unit volume by Q!. Thus, AV, /N, is of the order
of Q! times V, and therefore is negligible when
Q -,

The requirement (10) can be written in terms of
the @, by use of (12) as
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Zim(n'k| Qn|nk)=0. (16)

Consider each site m in the sum separately. Its
matrix element in (16) will depend only on its sur-
roundings and not where the origin for the coordi-
nate is chosen. As we change from one site to
another in the alloy, its surroundings will vary in
a random fashion because of our assumption of a
random alloy. The sum in (16) divided by N,, the
total number of impurity sites, is equivalent to
finding the @n from a fixed site by averaging over
all possible distributions of the various surrounding
J

0=(n'i\ T,,.\nl?>+ E’_ (n'l?lT,,,ln"l?)(n"l?lGAIn"'l?)<Z}'(n"'ﬁ'\T,lnE)>
~, k! 1#m

n*,n,

B3

atoms. We can therefore rewrite (16) as
((n' K| Qm|nk) )ay=0, 7)

where the indicated average is one where an atom
is fixed at the mth site and an average is taken
over all possible distributions of the surrounding
atoms. We iterate Eq. (14) once to obtain

Qp=Tp+TpGa s Tm+TpGa 2t TuGa 22 Q, . (18)
m#p m#p 1#m

Using (18), condition (17) becomes

av

. Er . <n/1';] T,,.ln"l?)(n"i'l GAln”'l?) (Z;r<nlui;,| T,lnwi"> <nlvl';nl GAInvEN> E'(nVEHl Q"nl;))“ .
1#m Pl

n*, n#,nIV,

nv,;', £

The average need not be taken over the T, matrix
elements since we are assuming that V, at each
site is the same, independent of its surroundings.
We can express

(n| T | K'Y = (nk|t |0/ R') 1 F- D Bm |
e = (20)
(n"k'|Q,|n§)=(n"§'|q;|nE)e“k' X) Ry ,

where (nklt!n'k’) and (n"'k'|g,|nk) are the matrix
elements evaluated by using the site of interest as
the origin of the wave functions. The sites [ and m
are located at ﬁ, and ﬁ,,., respectively. We assume
that ¢ is independent of the site since V,, is assumed
to be the same around each site. However, we ex-
pect that g, will depend on [ since this should de-
pend on, say, the distance between the /th and

mth site. The approximation that we make is to
neglect this site dependence of ¢, and assume that
it is equal to its average value which we denote

by g. With this approximation, the required av-
eraging over sites only affects the exponentials of
Eq. (20). The required averages as derived in
Appendix B are

’ E-E)-R E-E)eR - -
(E ei(kk)R,) =_cei(kk)Rm, k¢kl (21)
I#m av

’ -l_ ) .-' ’ .ll_ r .“ r - g .-
(E o E-ENR 3 i x)n,) = (2c% = ¢) ! F- DrRm
1#m p#1 av

kK, k"#k, k”+k’  (21)
where ¢ =N,/N, the fractional amount of the type-
two scattering atoms. In obtaining (21) and (21°),
we require that k’#k, k’#k’’, and K"/#Kk. That
kK''#k in (21') is assured by condition (17). The

(19)

[

terms we miss, namely, those with k' =K and
k’=Kk’’ are, as shown in Appendix C, of order t*.
The single-site approximation already has errors®?®
of the order of ¢* so that we introduce no additional
errors by neglecting them. The assumption is also
made that the atoms are completely random in their
distribution. Combining (21) with (19) and (20), we
obtain the relation

(n'K|t[1-cGat+(2c2-¢c)G,tG4q] |nE)=0 . (22)

We can calculate a general matrix element of
@ in (18) using the same approximation as led to
(22), but now this introduces errors of order ¢3,
and we obtain

(n'k'| q|nk) = ('K’ #[1 - c G 4t

+(2c2=¢)GAtGuq] lnE) (23)

or
g=t[1=cGot+(2c?-¢c)GotG,q] . (23")
From Eq. (23") we can solve for ¢ to find that
g=[1-(2c2-c)(tGo T (L -ctG 1t . (24)
Using the fact that from (15")
t=t ,~A/N,, (25)

where ¢,=(1-vG4)'v, and v is V, evaluated at the
site at the origin, we find for g in (24) that

q=tAC"A/N2 , (26)

where

tac=[(1-v6 )%+ € - 263G 2)*] '[1- (1 +¢)vG v,
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and we have again neglected terms of order 2,
Condition (17) can now be written as

(n'ﬂQ,,.lnlz):(n'ﬁlqlnﬁ):O . (27)
Using (26), Eq. (27) becomes
(n'K|A|nk)=A,., (&) =N, (n'K|t4c|nk) .  (28)

Equation (28) is the self-consistent relation which
determines A and is the central result of this paper.
The self-consistency enters because A not only
enters into the left-hand side of (28), but also into

t 4c through G 4.

III. DISCUSSION

We discuss how the approximation made here
compares with that made in the CP theory. In the
CP theory the average T matrix from each site is
set equal to zero, ! while in the approach used here,
the total forward scattering is set equal to zero;
the average T matrix from each site is not equal
to zero. However, the average of the total T ma-
trix of Eq. (12) is zero. The single-site approxima-
tions made in the averaging in both the CP theory
and the one presented here are essentially the
same.

From the criterion used in this paper we are
able, just as in the CP theory, to obtain the values
of the diagonal elements of G. In fact, the G, de-
fined by the criterion (10) has the same diagonal
elements as G, as can be verified by taking the
diagonal elements of Eq. (9) and obtaining

(k| G|n'K) = (nk| G 4|n' k) = (nk| E - Ho— A) [H'K) .
(29)

The right-hand side of (29) can be calculated in
terms of the E (k) and A ., (k) defined by Eq. (6)
and by Eqgs. (5) and (28), respectively. If inter-
band elements can be neglected we note that A,,,,(E)
is the self-energy or energy shift of the state |nk)
in the alloy.

The accuracy of (29) depends on how accurately
(10) is satisfied. The approximations made follow-
ing Eq. (21) indicated that (10) and thus (29) are cor-
rect to order #% or V3. This accuracy is the same
as that of the CP theory.® The error made in the
theory presented here may be smaller than that of
the CP theory because the distance between scat-
terers is greater than in the case of the CP theory.
In the CP theory, every site scatters while in the
theory presented here only the type-two atoms
scatter. The neglected interaction between scatter-
ing sites may be smaller, therefore, in the theory
presented here. However, this conclusion is only
tentative since a compensating characteristic of
the CP theory may be that the average scattering
from each site is zero, while this is not true for
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the theory presented here.

The main advantages of the approach presented
here are that it applies to more general perturba-
tions than the CPA and it gives directly the off-
diagonal elements of G. The CP theory, through
its averaging process, loses the information of the
off-diagonal elements of G, and it is a much more
involved process to obtain it again. 13 From Egs.
(9), (12), (20), and (26), we can write

G=GA+GAZ;v,n(tACm‘A/N2)GA (30)

and

<nE|G\n'E’> = <”E~GAfAcGAln'E'>Z},',.e“i" i).ﬁm’

k'#k . (31
Here t4cm is the operator ¢ 4. centered about the site
at Rn. Note that averaging over all sites in (31)
will make the off-diagonal elements zero, as should
be the case. .

For small ¢, using Eq. (28), we find that 4, (k)
becomes, to first order in c,

A, (&) = N, (nk| £| nk) (32)
where

to=(1-vGy) v, (33)

Go=(E —Hy)!.

We note that 7, is the { matrix for a single scatterer
in the pure matrix with the Hamiltonian H,. This
result agrees with that of previous ones. 2'!*

A knowledge of the matrix elements of G given
in Eqs. (29) and (31) permits one to calculate all of
the desired properties of the alloy. It is planned
that this be done in a subsequent publication using
specific models. It should be pointed out, though,
that the usual divergent problems that occur in cal-
culating some properties of alloys such as the con-
ductivity at zero frequency®'° are automatically
eliminated by the approach presented here. Choos-
ing G 4 such that the forward scattering of 7T is
zero eliminates these divergent problems just as
in the CPA. The forward scattering if not zero
presents such a problem because then the contribu-
tions from the various scatterers always add in
phase. No matter how small the forward scatter-
ing may be, it will eventually become large and
divergent in perturbation theory as one moves suf-
ficiently far through the solid to sense the contribu-
tions from enough scatterers. Thus, if forward
scattering is present, one must go to all orders in
perturbation theory to eliminate this divergence.
It was reasoning of this sort that first motivated
the use of condition (10).

We end with a statement on the limitations of the
treatment of the alloy problem as employed here
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and elsewhere. It is usually assumed that the po-
tential perturbation at a given site is a known in
the problem. Unfortunately, the actual situation
is not so simple. 2 The potential perturbation de-
pends on the distribution of the alloy electrons in
its vicinity, and, of course, this is not known till
the alloy problem is solved. Clearly a self-con-
sistent solution of the potential is required. This
self-consistency should be distinguished from the
one discussed in this paper in relation to Eq. (28).
In the actual problem, both self-consistencies must
be applied to obtain the final answer. The self-
consistent treatment of the potential leads to the
result that, in concentrated alloys, a nonanalytic
dependence on ¢ becomes important for alloys
where the two constituents have a differing valence
number.!® Such a result is completely missed if
the potential perturbation is not treated self-con-
sistently.

The single-site approximation neglects correla-
tions between neighboring scatterers and treats the
scattering from each site as being the same inde-
pendent of its surroundings. There have been at-
tempts to include some of the effects of correla-
tions between neighboring scatterers, but it should
be pointed out that such calculations are meaning-
less unless the potential is also treated self-con-
sistently. The correlation between neighbors
modifies the scattering because it modifies the
electron distribution around the scatterer. '3+
To treat the potential perturbation as fixed and
the same about each site, and yet to permit the
electron distribution around a scatterer to vary
because of correlations, is not consistent. The
contribution of the potential variation due to this
correlation is as important as the correlated scat-
tering terms and it is meaningless to do one with-
out the other. Correlations between neighboring
scatterers are negligible when the number of scat-
terers are dilute or when they are a weak perturba-
tion so that nonlinear effects are small. We thus
expect the single-site approximation to be best
under these circumstances.

APPENDIX A

In this appendix we estimate the size of matrix
elements and show explicitly that the neglected
terms in going from (15) to (15’) are of the order
of Q! compared to retained terms. Consider (15)
and make the substitution for V, of

Vi=t,(1+G t,)* , (A1)

which follows from the definition of ¢, given just
after (15"). We then obtain for (15)

T,=[1+aG (1 +tG)]* (1 +¢G)[(1 +¢G) t -a], (A2)

where a =A/N, and we have dropped the subscripts
for simplicity.

STERN 4

Expanding (A2) to the first order in @, we obtain
T,=t-a-aGt-tGa—-al(Gt)¥+-.- . (A3)

We neglect all terms of order a? and higher because
a is the order of Q7! as shown in (A6). What is not
so obvious is that the last three terms in (A3) are
also negligible because they are of order 7! times
the first two terms. We show that this is so.

We first estimate the magnitude of the terms ¢
and a. In this discussion we neglect interband
terms (by dropping the n label) since they will not
affect the order-of-magnitude estimates:

&'|t,|k)=t po=N"1 T ViRm0 R m'|t,|m) ,
m,m¢

(A4)

where |m) is the Wannier-like state localized at
site R and N is the total number of atoms in the
alloy. Since ¢, is localized about a site (for ex-
ample the m, site), we can estimate the magnitude
as

tu'=to/N; (a5)

where tg= (mgyltimy). From Eq. (28) we see that
the magnitude of a is also

a(k) =A(R)/Ny= (K|A/N,|K)=to/N . (AB)
Now consider the term in (A3)
(&'|tGa|k)=t yxCupa (k) . (A7)
The magnitude of G,, is
Gy At (A8)

where A is an energy of the order of the bandwidth.
The magnitude of (A7) is then

(k'|t,Galk)=t2a'N"2, (A9)

Clearly the term aGt in (A3) also has the same
magnitude of (A9).
It remains to estimate the last term in (A3),

(&’|a(Gr)?|R)=alk’) &'|(G1?|K) .

Now

(A10)

&'|(Gt)?|kK)=2 (k'|Gt |K"") (k"' | Gt | k)
o
t 2
=§ G,,‘,,,t,,,,,..c,,,,,,,tk..,,zgl)(——ﬂ-)
(A11)

In the last step of (A11) we used (A5) and (A8).
Since there are N different values of k'’ (A11) be-
comes

&' (Gt)?|K)=N "1 (t,/A) . (A12)
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Substituting this back into (A10) and using (A6)we
find

(&'|a(Gt)?| k)= (NAY2¢] . (A13)

From (A5) and (A6) we note that the first two
terms of (A3) are of the same order of magnitude
in N or €. By comparing (A5) and (A6) with (A9)
and (A13) we see that the last three terms of (A3)
are of the order of N™! or ! times the first two
terms. We use the fact that {,/A~1. As Q and
N -, only the first two terms of (A3) need be
retained.

APPENDIX B

In deriving (22) we were required to evaluate the
averages of (21), namely,

<E'eui-i')-§, (B1)
1#m av
and
lei(il-iu)-ﬁlz'ei(i"-;)‘ﬁp> (BZ)
1#m P#1 av

In both sums a perturbing type-two atom is on the
mth site. The indicated averaging is over an en-
semble of alloys assuming a completely random
distribution of type-one and type-two atoms. The
sums in (B1) and (B2) are over only those sites
which have a type-two atom, as indicated by the
prime on the summation sign.

First consider (B1). The probability in averaging
over ensembles that a site / has a type-two atom is
¢ =N,/N. Thus the average over ensembles in (B1)
becomes

, 22n.8 - ."
(E et wa,) =czenk-f') Ry
av

1#m 1#m

(B3)

The sum on the right-hand side of (B3) is over all
sites except m, as denoted by the fact that it does
not have a prime on the summation sign. Using
the fact that, summing over all sites,

SetEER, o Rtk (B4)
1

we have that
Tt FErR__ pHERI R gy (B5)

1#m
and we can substitute (B5) in (B3) to obtain
J
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< E'eni-i')-ﬁ,> o Cem‘-i').ﬁm rtk' . (B6)
1#m av ’
The evaluation of the sum in (B2) is as follows.
Consider the Ith term in (B2),
(B7)

$-g).R ’ t-2)-R
<el(k'k)ﬂlz>e“l k) R,)
av

p#l

In evaluating (B7) we must remember that a type-
two atom is definitely on both the mth and Ith site.
The average over ensembles leads to a probability
¢ that all other sites (not equal to m or I) have a
type-two atom,

? 'n_“ ."‘ . .N_. ." - --. "‘
(E ot E-D) R,> =3 cetE-DrR,  iEe-D1R,
av

P#l pEl,m
(B8)
Using (B4), we find that
T et EDeR,_ _ iE-D)Ry _ i E-D) Ry , K4k .
pEl,m
(B9)
Substituting (B9) into (B8), we find
eui'-i")-ﬁ,(E'eui"-i)-ﬁp) - celE®-E)R,
Pl av
+(1 _c)el(;“-f)-(im-ﬁl) , E”#E (BIO)

Summing (B10) over I#m and averaging over en-
sembles using (B6), we obtain

P HE-E) R, SN i(Ev-£)-R £-)-R
(E e 1Ry piEn-) n,) =(2c2 - c) et FBrRm
1#m P av

k#k’, k""#k, K’+k’ . (B11)

APPENDIX C

In deriving (22) from (19), we had to assume
that k#k’ in (21), and k#k’, k’#k""in (21'). In
this appendix, we estimate the errors introduced
by this neglect.

By assuming k’#K in (21"), we have neglected
the following terms in (19):

Z: (n'EITln"lz)( n"ﬁ|64|n”'i€) <nn/Elt |n1vl':n>(n]v}'zuch’nvi;u>< nvﬁnl q‘ni>

not, o, n TV

¥,z

% (Z'e“i"-fbﬂxz;’eﬂi-i“)'ﬁp> . (c1)
av

I#m Pl
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Note that we distinguish between 7T and ¢ in the

first matrix element. As indicated by (15’), T and

t differ only in their diagonal elements. Whereas

the diagonal element of { has the magnitude esti-
mated by (A5), the diagonal element of 7 has a
magnitude which is different. Its magnitude is
estimated near the end of this appendix.

J

(eun"-x)-n,zfenx—k")-R,> — i ®-D) R, (
1

av

We note that when k=K'’ the contribution of the term
is zero because of (17). Completing the average of
ensembles in (C1) over I#m, we obtain

(E'eui"-i)-'}i,z'eui—iw-ﬁ,) =Ny, K#k"
- ’
av

1#m P#I

(c3)

Inserting (C3) into (C1), we obtain for the neglected
terms (k’#K),
1>

—Nyc 20 'K|T|n"'K) (0" k|G, |n"""k)

n*, n*
X (n”'l:|tGAq|nlz) . (cq)

In the above calculation, we keep in mind that our
volume  will go to infinity in such a manner that
the ratio N,/Q is a constant. Thus we neglected
1 or 2 compared with N,.

Repeating a similar calculation as above, we
find that we have neglected terms of the following
form by assuming that k’#k’’ in (21'):

N,(1-¢) 25

k' n%, nn

K| 1 G 4|0 By (0"’ TR

STERN 4

The term in (C1) being averaged over ensembles
can be summed similarly to the method employed
in Appendix B. A type-two atom is definitely at
the site m. Choose a particular term /#m so that
we definitely have a type-two atom also at the /th
site. Then

PN P
e EEDRp 53 iR n,)
p#l,m

=1 _C)ei(f"-ih(ﬁl-ﬁm)_ c, k+k’ (c2)

x (n"""k'|G,q|nk) . (C5)

Again by similar arguments we find that we have
neglected the following terms by assuming k#k’
in (21):

Ny 3 R T|n" R G R| G ol R 0 E| 7| i)

"
n*,n*

(ce)

We next compare the neglected terms (C4)-(C6)
with a typical nonneglected term in (22), say,

(n'K|t |nk) . cn

Using the estimate of the size of the matrix ele-
ments given in Appendix A, we find that all terms
are of the order 2! and thus we cannot differentiate
on that basis.

Next we estimate the size of the neglected terms
by the order of f. Consider (C4). The last term
is of order 2 while (n'k | T1n''k) is of order ¢2 by
(19). Thus (C4) is of order #*. By a similar fash-
ion, we see that both (C5) and (C6) are also of
order t*. Thus, the error we make in our approxi-
mation is of order t*, similar to that of the CPA
or any other single-site approximation.
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